Resource-Restricted Deep Reinforcement Learning

Brent DeVries, Ryan Friberg

University of Chicago, CMSC 25500 Final Project
December 11th, 2021

1 INTRODUCTION & PROJECT OBJECTIVE

The primary objective of this project was to build a resource-
restricted Deep-Q Network for deep reinforcement learning.
We experiment with how to build a model that is capable of
generalizing across multiple related but distinct tasks, while
observing significant restraints on computation and memory
resources. We define our tasks to be three retro video games,
each with their own particular environment and objectives,
and we use the specific context of each game to define the
rewards that drive reinforcement learning. In this paper, we
will outline the methods and procedures by which we built
our resource-constrained, generalizable deep reinforcement
network, and we will reflect on its success.

2 METHODS & MODELS

Agent

In this paper, we apply Q-learning to solve reinforcement tasks
in video game playing. We use a deep neural network to model
the Q-value function, representing the expected cumulative
reward for a given state-action pair, and we use the frames of
each game as our network input. Our neural network employs
three convolutional layers with ReLU activations to map game
states into feature space. The state’s feature representation is
then mapped into action space via a pair of fully-connected
linear layers in order to identify the action the learned Q-value
function expects to yield the greatest cumulative rewards based
on the given state.

Experience Replay: We further augment our deep Q-learning
agent using Experience Replay in order to avoid passing our
agent highly dependent, consecutive game states and thus
improving the quality and efficiency of learning. On each
parameter update, we randomly sample a batch of 8-32 tran-
sitions from the DQN agent’s replay memory buffer, and we
use the loss on these randomly sampled batches to update
the DQN parameters. For each application, we employed a
memory replay buffer that stored either 10 or 30 thousand
previously observed transitions.

Loss: We define our loss using the equation:

Li(6;) = Ey gop([(vi — O(s,a: 6)))]
where y; represents the target Q-value under the optimal func-
tion O* and is given by

¥i = Ey.e[r+ymax 0(s',d';6,_1)ls,a]
a

We represent y; using a latent target DQN that is identical
to the agent network in structure, and we define the agent’s
loss relative to the output of the target network. In particular,
we compare the output from the agent network and the target
network using Huber (Smooth L1 Loss), which is then used to
update the network parameters.

Optimizer: We use an Adam optimizer to perform updates on
our DQN. As opposed to performing parameter updates on
each step the agent takes, parameters are learned once every
three steps for the sake of computational efficiency. Rather
than updating the target network on the regular update steps,
we delay updates to the target network by synchronizing it
with the agent network at a frequency defined by some number
of steps taken by the agent (usually between 1,000 and 5,000
steps).

Epsilon Decay: We utilized exponential epsilon decay to ad-
just our agent’s exploration rate of new, random actions over
our training iterations, i.e. at each step, epsilon is updated
according to the formula:

Erl=&*xO
where « € [0, 1] represents the decay rate.

Data Preprocessing

We employ a series of data preprocessing methods on the
game frames input to our DQN with the goal of improving
computational efficiency.

Frame Skipping: For each application, we define a frame skip
of 4, meaning only one of every four game frames is input to
our model.

Grayscale Conversion: We map each RGB frame to a graysale
frame, reducing the number of input channels for each frame
from 3 to 1.

Cropping: We crop each image from its initial spatial extent
to an 84 by 84 pixel spatial extent.

Frame stacking: For each of our applications, we define a
frame stack of 4, passing 4 frames as input into our network at
a time.

3 EXPERIMENTAL PROCEDURES

During our study, we applied our model to different situations
with various parameters and hyperparameters. This section
explains both the changes and environments we chose as well
as the reasoning behind them.

Emulated Games

We trained our DQN over three different games with funda-
mentally different designs, gameplay, objectives and platforms.
Specifically, we trained on Frogger for the Atari 2600, the orig-
inal Super Mario Bros. for the Nintendo Entertainment System
(NES), and the mobile game Flappy Bird. As mentioned be-
fore, we selected these games as they covered a fairly diverse
set of features including graphics (both in terms of color pal-
lets and resolutions) and action systems in addition to their



simplicity which limits the runtime of the DQN training com-
pared to more complex games. Another requirement we had
was that our selected games needed to have both an in-game
score and relatively fast-paced game sessions. The related, yet
distinct natures of these tasks yields unique insight into the
behavior and generalization of the DQN.

Reward Systems

The games we used each had unique reward and scoring sys-
tems. For example, in Frogger, the network was rewarded for
the further up the screen its character traveled. In addition
to having positive reinforcement (the in-game score), all of
our games also had a form of negative reinforcement in the
form of player death. In our study, we tried both substantially
boosting the reward for increasing the in-game score, but also
harshly penalizing player death. Somewhat surprisingly to
us, our results of this experiment revealed that this approach
was not always beneficial for training. One demonstration
was when our model was training on Flappy Bird, the sys-
tem would get adjusted over a new range of rewards. Even
though the reward was very very low, the model would just
find its actions within this new lower range and thus not affect
the training significantly. As such, we elected to have more
normal range for incentives and punishments in our training.

Hyperparameters

In our efforts to reduce training costs without too much of
an expense to the accuracy of the model, we experimented
varying several values that our model was dependent on.

Frame skip: We tried a wide range of frame skip val-
ues based on an internal emulated frame rate of 24-60
frames per second. Training on a frame skip of less than 4
significantly increased the total time to train the model but
provided a noticeable increase in average reward per episode
over many episodes. Training with frame skips of 6, 10, 20, or
even 30 would unsurprisingly drastically decrease the runtime
but unfortunately, even after several tens of thousands of
episodes, there would be no upward trend in reward. Through
trial and error, we determined a frame skip of 4 provided the
best balance between quality learning and resource constraints.

Experience Buffer Size: At the beginning of our study,
a severe bottleneck to our training was total memory usage.
Starting with a buffer size of greater than 100k, we would
quickly run out of VRAM after only roughly 40-60k steps,
which is far too few to achieve substantial learning. To
counteract this, we used a range of buffer sizes between 10k
and 30k, which allowed us to stay within our hardware’s
limits. (Similarly we tried varying the batch size between 8
and 32 with mixed results on improved RAM usage.) Without
the capability to train with a greater memory capacity, it is
difficult to determine how the truncated memory may have
impacted the performance of the DQN.

Epsilon: We observed that the optimal epsilon value
varied based on the particular application of our agent. For
Super Mario Bros and Frogger, a standard epsilon value of
1.0 sufficed. However, Flappy Bird’s gameplay proved to
be a unique case with respect to the epsilon value. While

taking a random action in a game like Mario is unlikely
to have significant consequences, it is far more likely to
cause an episode to be terminated in Flappy Bird due to
the precision necessitated to be successful in the game.
Therefore, even if a majority of actions are determined
by the agent’s DQN, occasional random actions may be
detrimental to game play and prevent the agent’s success.
Therefore, the epsilon value needed to be dropped. With
a high epsilon, even within the first couple episodes of the
training loop, the in-game bird would immediately rapidly
repeat the flap button to gain as much altitude as possible
and thus end the game on the upper part of the first pipe
or plummet to the ground at some point before the first
pipe. A lower epsilon of 0.1 allowed the network to drive
less aggressive action, allowing the agent to find more success.

Decay-rate: We observed that the epsilon value was
extremely sensitive to the value of the decay rate where
changes on the order of magnitude of less than 0.00001 would
have significant effects on the epsilon only after a handful of
episodes. Because of this behavior, we largely left the decay
rate at values extremely close to 1.0, only changing it slightly
in specific situations. One such situation was in Flappy Bird
with the intention of having the network eventually decide
nearly all of its actions as opposed to relying on a higher
percentage of random inputs (for similar reasons as described
in the section on the epsilon value above).

Action Space

Each of our games’ emulation environments had a different
input space but we surmised that not all of each game’s avail-
able actions were beneficial to increasing the score and in fact,
some were completely useless or even detrimental to the re-
ward. To counteract this, while increasing the speed of training
at the same time, we decided to limit the scope of actions that
the network had in certain games (Super Mario Bros and Frog-
ger). Super Mario Bros can be played with only two actions,
running to the right and jumping to the right. Stopping Mario,
moving left, jumping straight up, and jumping left all were not
necessary to play the game. With these two actions, we were
still able to see Mario occasionally complete the first level of
the game. Frogger’s emulation environment had access to all
18 of the possible Atari inputs when many of them did nothing
in game so instead we greatly restricted the possible actions.
One of the restrictions we contemplated was to only allow
the frog to move forward or perform no operation, however,
we wanted the model to be able to get to the other side of
every time. Unlike in Super Mario Bros, there may be situ-
ations where such a heavily restricted input space would be
unwinnable so in the end, we allowed the model to move in
all four directions in addition to no operation and were able to
see fairly continuous progress in the training of the model.

4 RESULTS

Frogger

Our model was trained on roughly 30 thousand episodes and
with an overall number of steps between 2 and 3 million.
Its ending epsilon value was just over 0.488 and it was
approaching an average reward of 15 (after starting with a
reward around 4). Comparatively, a model that randomly



Avg Reward

. \ . ' '
] 5000 10000 15000 20000 2500
Episode

Figure 1. FROGGER - Reward vs Episodes
(Please note that there is a a jump in the values due to an unfortunate
batch of data being overwritten)

inputs data, tested over 50 episodes consistently had a reward
of 0, with a very rare instance of a reward of 1. As referenced
in Figure 1, our DQN saw a steady, noticeable increase in
reward over the time of testing and as such, was our most
successful of the three games. Figure 2 demonstrates that the
average length of each episode decreases with time, implying
that each action it takes becomes more meaningful.

With the rendered videos, the model can be seen regu-
larly crossing the road section of the game with relative ease,
but when the game changes to the river section the model
is still figuring out what to do. This is likely because the
frog must only advance to the moving objects when it had to
strictly avoid moving objects in the prior section. However, as
it does sometimes advance to the logs, it is still learning and
with more training, it will likely be able to further increase its
score and eventually get to the other side.

Flappy Bird

Flappy Bird ended up posing an unusual challenge for our
model. After 50,000 episodes and around 1.5 million steps,
ending with an epsilon value of just under 0.0731 (starting
from 0.1), the model’s reward rarely reached over the value of
101 (or 21 in our second training environment) or the in-game
equivalent of passing through the first pipe. Compared to
the random baseline, which never exceeded a reward of 5,
our model still clearly beats out random actions, but the
design of the game ended up being a severe and immediate
bottle-neck. In the rendered video, our model sends the bird
high up in y-direction and then attempts to fall back down to
the opening between the first set of pipes. After the agent dies
repeatedly early in training as a result of hitting the floor in the
empty space before the first pipe, the model likely eventually
believes that the only harmful thing in the environment is the

100 =

Avg Length

=
=1
[

7O -

0 5000 10000 15000 20000 2500
Episode

Figure 2. FROGGER - Reward vs Length

floor. To counteract this, it logically tries to move its bird
as far away from that danger as possible and realizes that it
needs to correct itself too late. However, because it falls back
down at all, and it roughly lines up with the first opening, we
believe that the model will eventually overcome this hurdle
with more training. This behavior is different from when
we ran the model with a high epsilon value because in that
situation, the bird would immediate be sent upwards only
after a very small number of episodes and never think to fall
back down, whereas in this case, the bird fell to the ground
many times and eventually learned to position itself higher up
and then it does in fact try to correct itself when it needs to.

One method we attempted to use to mitigate this issue
was to hard-code in the actions of the bird for the first handful
of steps to get it closer to the pipes before handing over control
to our DQN. The idea would be to not give the agent enough
time to move the bird up too high. In setting up this second
training environment, we did observe a very slight increase
in reward over time but because there were now far fewer
steps per episode, the learning would still need substantially
more time for more drastic improvement. Another method we
would look further into would be to add a punishment for a
higher y-value to directly combat the problematic behavior
we observed.

Both of these training sessions saw an increasing re-
ward with increasing episodes but the difference was the
shape of the curve. Figure 3 shows how the original model
learns fairly quickly how to get to the x position of the first set
of pipes and begins to reach a horizontal asymptote in reward
whereas Figure 4 displays how the model with the head start
sees a steadier but slower increase in reward. As expected,
as the number of steps in-game is directly proportional to



the reward, the plots of the lengths per episode have almost
exactly the same shape as the reward.

80~-

Avg Reward

B0=

40- 4

[5)
[=]
P=
(=]
(=1

10000 20000 30000 40000
Episode

(=]

Figure 3. FLAPPY BIRD (VERSION 1) - Reward vs Episodes
This is model trained to start from the beginning of the game

Super Mario Bros

We trained our DQN agent for 8,000 episodes on the first level
of world 1 in the original NES game of Super Mario Bros with
a final epsilon value of approximately 0.357, and we restricted
our agent’s action space to include only forward movement and
forward jumping. Training time was a significantly inhibiting
factor for this application of our model, and more substantial
training would likely require a significant increase in compu-
tational and memory resources. Nonetheless, we observed a
modest improvement in rewards over the course of the training
episodes and relative to the random baseline. The fully trained
agent achieved an average score of 658.88 with an average
of 181.2 steps per episode over 50 episodes, while a random
choice of actions at each step was able to achieve an average
score of 649.74 on 202.82 steps per episode over 50 episodes.
Therefore, our trained agent outperformed the random base-
line by a rather modest margin of 9.14 points per episode.
However, it is important to consider that Mario is relatively
forgiving to a random choice of actions relative to the other
applications, i.e. random choices of actions are less likely
to terminate an episode or have serious consequences. Fur-
thermore, restricting the action space to exclusively forward
movement greatly improved the performance of the random
baseline, while simultaneously presenting challenges to our
trained agent by preventing backward movement to collect on
opportunities that may have boosted the agent’s score.

Referring to Figure 5, it is evident that after a period of unsta-
ble rewards, our trained agent displayed a consistent gradual
increase in rewards acquired per episode, indicating that fur-
ther training would be likely to yield substantial improvement.
Furthermore, Figure 6 indicates that while average rewards
increased steadily throughout training, the average number

230- =

Avg Reward

21.5-

21.0-

0 10000 20000 30000 40000 50000
Episode

Figure 4. FLAPPY BIRD (VERSION 2) - Reward vs Episodes
This is model trained to start closer to the pipes

of steps per episode gradually decreased. This suggests that
while the trained agent displayed only modest improvements
in rewards relative to the random baseline, it displayed more
significant improvements in regard to the rewards acquired per
step taken by the agent, reflecting greater efficiency relative to
the random baseline. This same phenomenon was observed in
our training for Frogger.

In a more qualitative assessment, the rendered video of our
trained agent’s game play sheds some light on the behav-
iors learned through training. The agent displays a couple
of promising learned behaviors, such as jumping to acquire
points for hitting bricks and jumping to acquire points for
killing adversaries such as goombas and koopas. It is also
clear from the rendering that the limited action space inhibits
the agent from capitalizing on frequent point opportunities
that would require waiting or moving backward. Finally, it is
evident that the agent is less effective in navigating the episode
past a certain point due to limited experiences, which further
highlights the value of more extensive training.

Results Discussion

One trend that we noticed in our results from Mario and Frog-
ger was that, while the model does fairly well at improving on
the cumulative reward per episode in both cases, it seems to
be significantly better at improving the reward per step taken.
This is reflected in the fact that the average reward per episode
consistently increased while the average number of steps per
episode decreased. This may not come as a surprise as it it
easier to predict from a single step to the next as opposed
to the actions over an entire episode, but it is a promising
finding nonetheless. Somewhat counter-intuitively, however,
as shown in Figure 7, Flappy Bird’s average length increases
as the model starts traveling further through the game and
this is still a good thing. The game autoscrolls, meaning the



Ta0-

T25=

-

=

=1
[

Avg Reward

@

i

(3
[l

650 =

625 -

' . y
2000 4000 6000 8000
Episode

Figure 5. MARIO - Reward vs Episodes

more steps you are in the game the better. With Frogger, for
example, the player can move up and down and side to side,
some of these actions are bad and some good depending on
the surrounding context, thus seeing a decrease in length is
a net-positive if it means the model is determining the more
efficient paths. Flappy Bird has no such route-planning and the
player has no choice but to constantly move forward, making
larger lengths always indicative of learning.

Through the application of our model to multiple tasks, it
is clear that certain situations and obstacles create bigger
challenges for the agent than others, even if they may not
seem particularly significant to a human player. In each of
our games, we observed that the introduction of an unfamiliar
environment (e.g. the water in Frogger, the first pipe in Flappy
Bird, and the later parts of the level in Mario) can make it
very difficult for the agent to adjust, especially if they have
spent a substantial amount of time learning one environment
in the earlier part of the game. Nonetheless, our agent
certainly displayed the ability to generalize. In each task, the
agent showed signs of significant learning, although learning
occurred more smoothly in some situations than others. This
gives us reason to believe that given more resources and
training time, the model would perform successfully across
each of these tasks.

Note: You can find the rendered videos of our trained
agents for each game in the appendix.

5 FUTURE STUDY

There are multiple areas for future study that we would
like to explore given access to stronger hardware. These
include the effect on both runtime and performance of several
parameters. Some examples testing and comparing grayscale
and full-RGB inputs, non-cropped images and croppings of
various sizes, and many more values for our hyperparameters,

200=

-
=
2 5
o 150 -
-
(=]
=
< -
100 -
L ]
! ! ! \ )
0 2000 4000 6000 8000
Episode
Figure 6. MARIO - Length vs Episodes
65- ®
6.4 -
L ]
£ 63
™ L]
=
@
-
]
=
L6z
6.1~
60- ®
0 10000 20000 30000 40000 50000
Episode

Figure 7. FLAPPY BIRD (VERSION 2) - Length vs Episodes
This is model trained to start closer to the pipes

including experimenting with variable decay and learning
rates. Additionally, our research of other studies suggested an
ideal number of training steps to be excess of 40 million, and
we would love to train and evaluate our model on a number of
steps of that magnitude.

Perhaps the most interesting area for further study would
be in regards to the incidence of catastrophic forgetting or
interference. We mentioned in the experimental procedures
section that our memory constraints required that we truncate
our agent’s replay memory size from 100 thousand transitions



to a number between 10 and 30 thousand transitions, a
very significant decrease. The concern is that, even if we
were to train our agent for an arbitrarily large amount of
time, the limited size of the memory buffer may cause the
agent to completely lose previously learned information
over time, deeming further training drastically less effective.
Catastrophic forgetting is an obstacle that has the ability
to prevent the development of a successful model, even in
the absence of restraints on computational resources. Thus,
a systematic experiment and study on the occurrence of
catastrophic forgetting relative to buffer size would be of great
interest.

Finally, a further area of interest would be comparing
the performance of a Q-learning approach to reinforcement
learning with algorithms that may be more sophisticated or
founded upon a different paradigm. For instance, Actor-Critic
algorithms leverage both policy gradients and Q-learning, so
it would be very interesting to study how much that added
complexity improves model performance. Another point
of comparison would be with proximal policy optimization
(PPO), which is the state of the art policy gradient-based
approach to reinforcement learning. It would be interesting
to systematically compare these approaches to a DQN with
respect to results, resource requirements, and generalizability
across tasks.

6 APPENDIX

All appendix materials are contained in the zip file included
with this submission. For each game, these materials include
our Jupyter notebooks (ipynb and pdf), CSV’s containing all
data, and videos of our trained agents in game play.

7 REFERENCES

[1] Playing Atari with Deep Reinforcement Learning (Mnih et
al., 2013)

https://arxiv.org/pdf/1312.5602.pdf

[2] OpenAl Gym: Documentation
https://gym.openai.com/docs/

[3] OpenAl Gym: Environments
https://gym.openai.com/envs/atari

[4] OpenAl Gym

https://github.com/openai/gym

[5] Flappy Bird Gym
https://github.com/Talendar/flappy-bird-gym

[6] Super Mario Bros Gym
https://github.com/Kautenja/gym-super-mario-bros

[7] PyTorch Documentation
https://pytorch.org/docs/stable/index.html

[8] Overcoming catastrophic forgetting in neural networks
(James Kirkpatrick et al., 2017)
https://www.pnas.org/content/114/13/3521



	1 Introduction & Project Objective
	2 Methods & Models
	Agent
	Data Preprocessing


	3 Experimental Procedures
	Emulated Games
	Reward Systems
	Hyperparameters
	Action Space


	4 Results
	Frogger
	Flappy Bird
	Super Mario Bros
	Results Discussion


	5 Future Study
	6 Appendix
	7 References

